HIGHLIGHTS


  • 1. E. Ultee, X. Zhong, S. Shitut, A. Briegel & D. Claessen (2020). Formation of wall-less cells in Kitasatospora viridifaciens requires cytoskeletal protein FilP in oxygen-limiting conditions. Molecular Microbiology (in press).
  • 2. Z. Zhang, C. Du, F. de Barsy, M. Liem, A. Liakopoulos, G.P. van Wezel, Y.H. Choi, D. Claessen and D.E. Rozen (2020). Antibiotic production in Streptomyces is organised by a division of labor through terminal genomic differentiation. Science Advances 6: eaay5718
  • 3. D. Claessen & J. Errington (2019). Cell wall-deficiency as a coping strategy for stress. Trends in Microbiology 27: 1025-1033.
  • 4. K. Ramijan, E. Ultee, J. Willemse, Z. Zhang, J.A.J. Wondergem, A. van der Meij, D. Heinrich, A. Briegel, G.P. van Wezel & D. Claessen (2018). Stress-induced formation of cell wall-deficient cells in filamentous actinomycetes. Nature Communications 9: 5164.
  • 5. B. Zacchetti, H.A.B. Wösten & D. Claessen (2018). Multiscale heterogeneity in filamentous microbes. Biotechnology Advances 36: 2138-2149.
  • 6. M.L.C. Petrus, E. Vijgenboom, A.K. Chaplin, J.A.R. Worrall, G.P. van Wezel & D. Claessen (2016) The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in Streptomyces. Open Biology 6: 150149.
  • 7. D. Claessen & G.P. van Wezel (2014) Off the wall. eLife 3: e05427.
  • 8. D. Claessen, D.E. Rozen, O.P. Kuipers, L. Søgaard-Andersen & G.P. van Wezel (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nature Reviews in Microbiology 12: 115-124.
  • 9. D. Claessen, R. Emmins, L.W. Hamoen, R.A. Daniel, J. Errington & D.H. Edwards (2008) Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Molecular Microbiology 68: 1029-1046.
  • 10. D. Claessen, R. Rink, W. de Jong, J. Siebring, P. de Vreugd, F.G.H. Boersma, L. Dijkhuizen & H.A.B. Wösten (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes and Development 17: 1714-1726.

PREPRINTS 


  • A.R. Muok, D. Claessen & A. Briegel (2020). Microbial piggy-back: how Streptomyces spores are transported by motile soil bacteria. bioRxiv: 158626; doi: https://doi.org/10.1101/2020.06.18.158626.
  • Z. Zhang, B. Claushuis, D. Claessen & D.E. Rozen (2020). Mutational meltdown of microbial altruists in Streptomyces coelicolor colonies. bioRxiv: 347344; doi: https://doi.org/10.1101/2020.10.20.347344.
  • L. Zhang, K. Ramijan, V.J. Carrión, L.T. van der Aart, J. Willemse, G.P. van Wezel & D. Claessen (2020). A novel and conserved cell wall enzyme that can substitute for the Lipid II synthase MurG. bioRxiv: 336396; doi: https://doi.org/10.1101/2020.10.12.336396.

ALL PUBLICATIONS


2020


  • E. Ultee, X. Zhong, S. Shitut, A. Briegel & D. Claessen (2020). Formation of wall-less cells in Kitasatospora viridifaciens requires cytoskeletal protein FilP in oxygen-limiting conditions. Mol Microbiol (in press).
  • S. Shitut, G. Özer Bergman, A. Kros, D.E. Rozen & D. Claessen (2020). Use of permanent wall-deficient cells as a system for the discovery of new-to-nature metabolites. Microorganisms 8: E1897.
  • K. Ramijan, Z. Zhang, G.P. van Wezel & D. Claessen (2020). Genome rearrangements and megaplasmid loss in the filamentous bacterium Kitasatospora viridifaciens are associated with protoplast formation and regeneration. Antonie van Leeuwenhoek 113: 825-837.
  • E. Ultee, L.T. van der Aart, D. Van Dissel, C. Diebolder, G.P. van Wezel, D. Claessen & A. Briegel (2020). Teichoic acids anchor distinct cell wall lamellae in an apically growing bacterium. Commun Biol 3: 314. 
  • Z. Zhang, C. Du, F. de Barsy, M. Liem, A. Liakopoulos, G.P. van Wezel, Y.H. Choi, D. Claessen and D.E. Rozen (2020). Antibiotic production in Streptomyces is organised by a division of labor through terminal genomic differentiation. Sci Adv 6: eaay5718.


2019


  • D. Claessen & J. Errington (2019). Cell wall-deficiency as a coping strategy for stress. Trends Microbiol 27: 1025-1033.
  • E. Ultee, K. Ramijan, R.T. Dame, A. Briegel & D. Claessen (2019). Stress-induced adaptive morphogenesis in bacteria. Adv Microb Phys 74: 97-141.
  • I. López-Goñi, J. Giner-Lamia, A. Álvarez-Ordoñez, A. Benitez-Páez, D. Claessen, M. Cortesao, M. de Toro, D. García-Ruano, E.T. Granato, Á.T. Kovács, J.L. Rommelde, T.G. Sana, M. Sánchez-Angulo, F.J. Sangari, W.K. Smits, T. Sturm, J.L. Thomassen, K.N.G. Valdehuesa & M. Zapotoczna (2019). #EUROmicroMOOC: using Twitter to share trends in Microbiology worldwide. FEMS Microbiol Lett 366: pii: fnz141.


2018


  • K. Ramijan, E. Ultee, J. Willemse, Z. Zhang, J.A.J. Wondergem, A. van der Meij, D. Heinrich, A. Briegel, G.P. van Wezel & D. Claessen (2018). Stress-induced formation of cell wall-deficient cells in filamentous actinomycetes. Nat Commun 9: 5164. 
  • B. Zacchetti, H.A.B. Wösten & D. Claessen (2018). Multiscale heterogeneity in filamentous microbes. Biotechnol Adv 36: 2138-2149.
  • B. Zacchetti, A. Andrianos, D. van Dissel, E.M. de Ruiter, G.P. van Wezel & D. Claessen (2018). Micro-encapsulation extends mycelial viability of Streptomyces lividans 66 and increases enzyme production. BMC Biotechnol 18: 13. 
  • J. Willemse, F. Büke, D. van Dissel, S. Grevink, D. Claessen & G.P van Wezel (2018). SParticle, an algorithm for the analysis of filamentous microorganisms in submerged cultures. Antonie van Leeuwenhoek 111: 171-182.
  • B. Zacchetti, P. Smits & D. Claessen (2018). Dynamics of pellet fragmentation and aggregation in liquid-grown cultures of Streptomyces lividans. Front Microbiol 9: 943.
  • D. van Dissel, J. Willemse, B. Zacchetti, D. Claessen, G.B. Pier & G.P. van Wezel (2018). Production of poly-β-1,6-N-acetylglucosamine by MatAB is required for hyphal aggregation and hydrophilic surface adhesion by Streptomyces. Microb Cell 5: 269-279.


2017


  • A. Dragoš, A.T. Kovács & D. Claessen (2017). The role of functional amyloids in multicellular growth and development of Gram-positive bacteria. Biomolecules 7: E60.
  • W. Yang, J. Willemse, E.B. Sawyer, F. Lou, W. Gong, H. Zhang, S.L. Gras, D. Claessen & S. Perrett (2017). The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor. Sci Rep 7: 42876.
  • K. Ramijan, G.P. van Wezel & D. Claessen  (2017). Genome sequence of the filamentous actinomycete Kitasatospora viridifaciens. Genome Announc 5: e01560-16.


2016


  • Z. Zhang, D. Claessen & D.E. Rozen (2016). Understanding microbial divisions of labour. Front Microbiol 7: 2070.
  • B. Zacchetti, J. Willemse, B. Recter, D. van Dissel, G.P. van Wezel, H.A.B. Wösten & D. Claessen (2016). Aggregation of germlings is a major contributing factor towards mycelial heterogeneity of Streptomyces. Sci Rep 6: 27045.
  • L. Zhang, J. Willemse, D. Claessen & G.P. van Wezel (2016). SepG coordinates sporulation-specific cell division and nucleoid organization in Streptomyces coelicolor. Open Biol 6: 150164.
  • M.L.C. Petrus, E. Vijgenboom, A.K. Chaplin, J.A.R. Worrall, G.P. van Wezel & D. Claessen (2016) The DyP-type peroxidase DtpA is a Tat-substrate required for GlxA maturation and morphogenesis in Streptomyces. Open Biol 6: 150149.


2015


  • C. Wu, B. Zacchetti, A.F.J. Ram, G.P. van Wezel, D. Claessen & Y.H. Choi (2015) Expanding the chemical space for natural products by Aspergillus-Streptomyces co-cultivation and biotransformation. Sci Rep 5: 10868.
  • D. van Dissel, D. Claessen, M. Roth & G.P. van Wezel (2015) A novel locus for mycelial aggregation forms a gateway to improved Streptomyces cell factories. Microb Cell Fact 14: 44.
  • A.K. Chaplin, M.L.C. Petrus, G. Mangiameli, M.A. Hough, D.A. Svistunenko, P. Nicholls, D. Claessen, E. Vijgenboom & J.A.R. Worrall (2015) GlxA is a new structural member of the radical copper oxidase family and is required for glycan deposition at hyphal tips and morphogenesis of Streptomyces lividans. Biochem J 469: 433-444.


2014


  • D. van Dissel, D. Claessen & G.P. van Wezel (2014) Morphogenesis of Streptomyces in submerged cultures. Adv Appl Microbiol 89: 1-45.
  • M.L.C. Petrus, G.J. van Veluw, H.A.B. Wösten & D. Claessen (2014) Sorting of Streptomyces cell pellets using a complex parametric analyzer and sorter. J Vis Exp 84: e51178.
  • M.L.C. Petrus & D. Claessen (2014) Pivotal roles for Streptomyces cell surface polymers in morphological differentiation, attachment and mycelial architecture. Antonie van Leeuwenhoek 106: 127-139.
  • G. Girard, J. Willemse, H. Zhu, D. Claessen, K. Bukarasam, M. Goodfellow & G.P. van Wezel (2014) Analysis of novel kitasatosporae reveals significant evolutionary changes in conserved developmental genes between Kitasatospora and Streptomyces. Antonie van Leeuwenhoek 106: 365-380.
  • D.M. Ekkers, D. Claessen, F. Galli & E.J. Stamhuis (2014) Surface modification using interfacial assembly of the Streptomyces chaplin proteins. Appl Microbiol Biotechnol 98: 4491-4501.
  • D. Claessen & G.P. van Wezel (2014) Off the wall. eLife 3: e05427.
  • D. Claessen, D.E. Rozen, O.P. Kuipers, L. Søgaard-Andersen & G.P. van Wezel (2014) Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol 12: 115-124.


Before 2014


  • K. Surdova, P. Gamba, D. Claessen, T. Siersma, M.J. Jonker, J. Errington & L.W. Hamoen (2013) The conserved DNA-binding protein WhiA is involved in cell division in Bacillus subtilis. J Bacteriol 195: 5450-5460.
  • M. Bokhove, D. Claessen, W. de Jong, L. Dijkhuizen, E.J. Boekema & G.T. Oostergetel (2013) Chaplins of Streptomyces coelicolor self-assemble into two distinct functional amyloids. J Struct Biol 184: 301-309.
  • G.J. van Veluw, M.L.C. Petrus, J. Gubbens, R. de Graaf, I.P. de Jong, G.P. van Wezel, H.A.B. Wösten & D. Claessen (2012) Analysis of two distinct mycelial populations in liquid-grown Streptomyces cultures using a flow cytometry-based proteomics approach. Appl Microbiol Biotechnol 96: 1301-1312.
  • E.B. Sawyer, D. Claessen, S.L. Gras & S. Perrett (2012) Exploiting amyloid: how and why bacteria use cross-beta fibrils. Biochem Soc Trans 40: 728-734.
  • W. de Jong, E. Vijgenboom, L. Dijkhuizen, H.A.B. Wösten & D. Claessen (2012) SapB and the rodlins are required for development of Streptomyces coelicolor in high osmolarity media. FEMS Microbiol Lett 329: 154-159.
  • I.P. de Jong & D. Claessen (2012) A sandwich-culture technique for controlling antibiotic production and morphological development in Streptomyces coelicolor. J Microbiol Methods 91: 318-320.
  • E.B. Sawyer, D. Claessen, M. Haas, B. Hurgobin & S.L. Gras (2011) The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils. PLoS One 6: e18839.
  • W. de Jong, H.A.B. Wösten, L. Dijkhuizen & D. Claessen (2009) Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol Microbiol 73: 1128-1140.
  • W. de Jong, A. Manteca, J. Sanchez, G. Bucca, C.P. Smith, L. Dijkhuizen, D. Claessen & H.A.B. Wösten (2009) NepA is a structural cell wall protein involved in maintenance of spore dormancy in Streptomyces coelicolor. Mol Microbiol 71: 1591-1603.
  • D. Claessen, R. Emmins, L.W. Hamoen, R.A. Daniel, J. Errington & D.H. Edwards (2008) Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol Microbiol 68: 1029-1046.
  • A. Manteca, D. Claessen, C. Lopez-Iglesias & J. Sanchez (2007) Aerial hyphae in surface cultures of Streptomyces lividans and Streptomyces coelicolor originate from viable segments surviving an early programmed cell death event. FEMS Microbiol Lett 274: 118-125.
  • D. Claessen, W. de Jong, L. Dijkhuizen & H.A.B. Wösten (2006) Regulation of Streptomyces development: reach for the sky! Trends Microbiol 14: 313-319.
  • M.F.B.G. Gebbink, D. Claessen, B. Bouma, L. Dijkhuizen & H.A.B. Wösten (2005) Amyloids - a functional coat for microorganisms. Nat Rev Microbiol 3: 333-341.
  • D. Claessen, I. Stokroos, H.J. Deelstra, N.A. Penninga, C. Bormann, J.A. Salas, L. Dijkhuizen & H.A.B. Wösten (2004) The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol 53: 433-443.
  • G. van Keulen, H.M. Jonkers, D. Claessen, L. Dijkhuizen & H.A.B. Wösten (2003) Differentiation and anaerobiosis in standing liquid cultures of Streptomyces coelicolor. J Bacteriol 185: 1455-1458.
  • D. Claessen, R. Rink, W. de Jong, J. Siebring, P. de Vreugd, F.G.H. Boersma, L. Dijkhuizen & H.A.B. Wösten (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17: 1714-1726.
  • D. Claessen, H.A.B. Wösten, G. van Keulen, O.G. Faber, A.M.C.R. Alves, W.G. Meijer & L. Dijkhuizen (2002) Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol Microbiol 44: 1483-1492.

© DENNIS CLAESSEN, 2020